CIE Chemistry A-Level Practicals for Papers 3 and 5
Enthalpy Change \& Measuring Temperature

Measuring Temperature

In an enthalpy change practical, the temperature change needs to be accurately measured. This is done by minimising heat loss or heat gain from the surroundings. A polystyrene cup and lid is used to insulate the reaction mixture from surroundings. The stirrer is used to ensure thermal energy is spread evenly in the reaction mixture. The bottom of the thermometer must be in the reaction mixture. An electronic temperature sensor and data logging software could be used to plot the graph accurately. If not, ensure you read the scale carefully.

A flame calorimeter could be used to improve accuracy:

- Spiral chimney is made of copper
- Flame is enclosed
- Fuel burns in pure oxygen rather than air

Example temperature change graph

These graphs are constructed to eliminate the error that is due to heat loss to the surroundings. This gets a more precise temperature change from the cooling curve (for an exothermic reaction). The horizontal reflection in of the diagram on the left is the heating curve that occurs in an endothermic reaction. The same principle applies.

Enthalpy Change

Note that you make the following assumptions:

- All solutions have the heat capacity of water.
- Neglect the specific heat capacity of the calorimeter, any heat absorbed by the apparatus is ignored.
- Reaction or dissolving isn't incomplete or slow.
- Density of solution is taken to be the same as water.
- None of the water could have evaporated.
- Room temperature is unchanged.
- No incomplete combustion if using a fuel.

Due to these assumptions, the value you calculate (whilst being accurate) may vary from the data book value for enthalpy.

Before the practical begins, use the method for measuring mass, to calculate a mass of solid used. Then calculate the moles from $\left(n=M_{r} X m\right)$. The energy change is from $\left.Q=m c \Delta T\right)$ where: Q is energy in J (divide by 1000 to convert to kJ), m is mass of water in grams, c is specific heat capacity (4.186 for water) and ΔT is temperature change (from graph). To work out enthalpy change divides the energy (kJ) by moles. If exothermic add a minus, if endothermic add a plus. Standard units are $\mathrm{kJ} \mathrm{mol}^{-1}$.

Method (example: enthalpy change of hyarastion of ${ }^{\text {resonces }} \mathrm{CuSO}_{4}$)
$\left.\begin{array}{|l|l|l|}\hline \text { Method } & \text { Accuracy } & \text { Explanation } \\ \hline \text { 1. Weigh out between 3.90-4.10 g of } \\ \text { anhydrous copper (II) sulfate in a dry, } \\ \text { stoppered weighing bottle. Keep the } \\ \text { stock of solid in a closed container } \\ \text { during weighing. The precise mass } \\ \text { should be recorded. }\end{array} \quad \begin{array}{l}\text { - Wash the containers } \\ \text { with the solution to be } \\ \text { used. }\end{array} \quad \begin{array}{l}\text { - Dry the cup after } \\ \text { washing. }\end{array}\right]$

